Concept

- **Zimmer MotionLoc** Screws reduce the stiffness of a locked plating construct.
- **Zimmer MotionLoc** Screws reduce construct stiffness by elastic flexion of the **Zimmer MotionLoc** Screw shaft within a controlled motion envelope in the near cortex.
- **Zimmer MotionLoc** Screw constructs require the plate to be elevated slightly off the bone to enable elastic flexion of **Zimmer MotionLoc** Screws.

Indications for Use – **Zimmer MotionLoc** Screw for NCB Polyaxial Locking Plate System

The **NCB** Polyaxial Locking Plate System is indicated for temporary internal fixation and stabilization of fractures and osteotomies of long bones.

Contraindications

Severe muscular, neural, or vascular diseases that endanger the extremities involved.

All concomitant diseases that may impair the fixation of the implant and/or the success of the intervention.

Lack of bone substance or poor bone quality which makes stable seating of the implant impossible.

Acute or chronic, local or systemic infections.

Allergy to the implanted material.

Technique

WARNING: The **Zimmer MotionLoc** Screws are only intended for use in the diaphyseal side of a fracture where screw purchase in the far cortex opposite the plate can be obtained. Do not use them in the metaphysis or epiphysis of the bone.

WARNING: The **Zimmer MotionLoc** Screws should not be used with **NCB** Plates in a condition where the gap between the plate and the bone is greater than 3mm as this may place undue stress on the screw and cause failure.

WARNING: Do not use standard **NCB** Screws in the same fracture segment as the **Zimmer MotionLoc** Screws since this may lead to a stress riser and potential failure.

WARNING: Do not use 4.0mm **Zimmer MotionLoc** Screws for distal femur fractures.

NOTE: To maximize the effectiveness of the **Zimmer MotionLoc** Screw, the plate should not be compressed to the bone. Use **NCB** Spacers in the diaphysis to elevate the plate off the bone surface. **NCB** Spacers are available in 1mm, 2mm, and 3mm sizes. Two spacers may be inserted into the plate before plate application.

Insert the **NCB** Plate and temporarily fix it to the bone with a 2.0mm K-wire at each end of the plate (Fig. 1).

Fix the epiphyseal and metaphyseal segments of the fracture as described in the surgical techniques for the **NCB** Distal Femoral, Proximal Tibial, and Proximal Humeral Plates (Fig. 2).
For NCB Femoral and Tibial Plate Shaft Fixation

WARNING: A **MINIMUM of four (4)** Zimmer MotionLoc Screws are required to be placed in the shaft of the bone: 1) distal to the fracture in proximal humerus and proximal tibial fractures; and 2) proximal to the fracture for distal femur fractures.

To insert the **5.0mm** Zimmer MotionLoc Screws use the **4.3mm** Drill Guide. Fully seat the Drill Guide into the plate hole perpendicular to the plate surface, and then tilt it as necessary to achieve the desired screw angle.

NOTE: The Drill Guide must remain fully seated in the plate hole to limit the amount of angulation to within the 30° cone allowed by the NCB System (Fig. 3).

Drill using the **4.3mm** drill bit. If drilling in hard cortical bone, remove the Drill Guide and tap the far cortex with the **5.0mm** Tap.

Use the NCB Depth Gauge to determine the appropriate screw length (Fig. 4). Zimmer MotionLoc Screws should fully engage the far cortex. For maximum stiffness reduction, screws should be placed as perpendicular to the plate as possible.

Select the appropriate Zimmer MotionLoc Screw from the Zimmer MotionLoc Screw Caddy. Insert the screw until it is gently seated in the plate hole (Fig. 5).

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

To lock the screw to the plate, insert a Locking Cap and tighten it using the NCB 6Nm Torque-Limiting Screwdriver until a **CLICK** is heard from the handle of the Screwdriver. The **CLICK** indicates that enough torque has been applied to effectively lock the Cap (Fig. 6).

Repeat this procedure as necessary to insert a **MINIMUM of four (4)** Zimmer MotionLoc Screws and Locking Caps into the shaft of the bone (Fig. 7).

WARNING: To prevent screw stripping in poor quality bone, **do not over-tighten** the screw.

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

NOTE: The plate may be gently lagged to the bone, but **do not compress plate to bone.**

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.
For NCB Tibial and Humeral Plate shaft fixation

WARNING: A MINIMUM of four (4) Zimmer MotionLoc Screws on the diaphyseal side of the fracture are required to be placed in the shaft of the bone: 1) distal to the fracture in proximal humerus and proximal tibial fractures; and 2) proximal to the fracture for distal femur fractures.

To insert the **4.0mm** Zimmer MotionLoc Screws use the **3.3mm** Drill Guide. Fully Seat the Drill Guide into the plate hole perpendicular to the plate surface, and then tilt it as necessary to achieve the desired screw angle.

NOTE: The Drill Guide must remain fully seated in the plate hole to limit the amount of angulation to within the 30° cone allowed by the NCB system.

Drill using the **3.3mm** drill bit. If drilling in hard cortical bone, remove the Drill Guide and tap the far cortex with the **4.0mm** Tap.

Use the NCB Depth Gauge to determine the appropriate screw length. Zimmer MotionLoc Screws should fully engage the far cortex. For maximum stiffness reduction, screws should be placed as perpendicular to the plate as possible.

Select the appropriate Zimmer MotionLoc Screw from the Zimmer MotionLoc Screw Caddy. Insert the screw until it is gently seated in the plate hole.

WARNING: To prevent screw stripping in poor quality bone, do not over-tighten the screw.

NOTE: The plate may be gently lagged to the bone, but do not compress plate to bone.

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

WARNING: After insertion, the reverse cutting threads (for screw removal) of the Zimmer MotionLoc Screw should not be engaged in the near cortex as this will reduce the effectiveness of the construct and may cause failure of the screw. Verify that the threads of the Zimmer MotionLoc Screw are not engaged in the near cortex.

To lock the screw to the plate, insert a Locking Cap and tighten it using the NCB 6Nm Torque-Limiting Screwdriver until a CLICK is heard from the handle of the Screwdriver. The CLICK indicates that enough torque has been applied to effectively lock the Cap.

Repeat this procedure as necessary to insert a MINIMUM of four (4) Zimmer MotionLoc Screws and Locking Caps into the shaft of the bone.

NOTE: If NCB Spacers are not used, and the plate is directly adjacent to the bone, the Zimmer MotionLoc Screws should be backed out a minimum of ½ turn to provide a 1mm gap.

Technical Pearls

Minimizing stress in the fixation construct:

- Elevation of the plate over the bone surface is defined by the first two locked screws.
- Additional screws should be gently seated into plate holes before application of locking caps. If an additional screw is not fully seated, application of the locking cap may induce stress by forcing the screw into the bone. Conversely, if an additional screw is excessively tightened against an elevated plate, the plate may be bent.

Implant Removal

To remove the NCB Plate, first remove all the Locking Caps. Then loosen all the bone screws without completely removing them (this prevents rotation of the bone plate when removing the last screw). Then completely remove all bone screws.

NOTE: Make sure that the tip of the NCB Screwdriver is correctly placed in the hex drive of the locking caps and/or Zimmer MotionLoc Screws. Failure to do so could damage the hex drive and complicate the extraction of the implant.

NOTE: In case of difficulties in loosening the Zimmer MotionLoc Screws, tighten the screws slightly before loosening them.
This documentation is intended exclusively for physicians and is not intended for laypersons. Information on the products and procedures contained in this document is of a general nature and does not represent and does not constitute medical advice or recommendations. Because this information does not purport to constitute any diagnostic or therapeutic statement with regard to any individual medical case, each patient must be examined and advised individually, and this document does not replace the need for such examination and/or advice in whole or in part. Please refer to the package inserts for important product information, including, but not limited to, contraindications, warnings, precautions, and adverse effects.

Contact your Zimmer representative or visit us at www.zimmer.com

The CE mark is valid only if it is also printed on the product label.